# 非递归公式

This page is a translated version of the page Nonrecursive Movement Formulas and the translation is 100% complete.

• ${\textstyle v_{0}}$ 是玩家的初始速度（跳跃之前，${\displaystyle t_{0}}$ 时的速度）
• ${\textstyle t}$ 是计入的刻数（例如：平地跳跃的持续时间是 t=12，参见 Tiers
• ${\textstyle J}$ 是“跳跃增益”（疾跑跳跃为 0.3274，斜疾跑跳跃为 0.291924，45°无疾跑跳跃为 1.0……）
• ${\textstyle M}$ 是跳跃后的移动乘数（45°斜疾跑为 1.3，正常疾跑为 1.274，无疾跑45°为 1.0……）

## 垂直运动（跳跃）[1.8]

${\textstyle {\textrm {V}}_{Y}(t)=4\times 0.98^{t-5}-3.92}$

${\textstyle {\text{Y}}_{rel}(t)={\underset {\text{跳 跃 最 高 点}}{\underbrace {197.4-217\times 0.98^{5}} }}+200(0.98-0.98^{t-4})-3.92(t-5)}$

## 垂直运动（跳跃）[1.9+]

${\textstyle {\textrm {V}}_{Y}(t)=0.42\times 0.98^{t-1}+4\times 0.98^{t}-3.92}$

${\textstyle {\textrm {Y}}_{rel}(t)=217\times (1-0.98^{t})-3.92t}$

## 水平运动（落地跳跃）

${\textstyle {\textrm {V}}_{H}(v_{0},t)={\frac {0.02M}{0.09}}+0.6\times 0.91^{t}\times \left(v_{0}+{\frac {J}{0.91}}-{\frac {0.02M}{0.6\times 0.91\times 0.09}}\right)}$

${\textstyle {\textrm {Dist}}(v_{0},t)=1.91v_{0}+J+{\frac {0.02M}{0.09}}(t-2)+{\frac {0.6\times 0.91^{2}}{0.09}}\times (1-0.91^{t-2})\times \left(v_{0}+{\frac {J}{0.91}}-{\frac {0.02M}{0.6\times 0.91\times 0.09}}\right)}$

## 水平运动（延后跳跃）

${\textstyle {\textrm {V}}_{H}^{*}(v_{0},t)={\frac {0.02M}{0.09}}+0.6\times 0.91^{t}\times \left(0.6v_{0}+{\frac {J}{0.91}}-{\frac {0.02M}{0.6\times 0.91\times 0.09}}\right)}$

${\textstyle {\textrm {Dist}}^{*}(v_{0},t)=1.546v_{0}+J+{\frac {0.02M}{0.09}}(t-2)+{\frac {0.6\times 0.91^{2}}{0.09}}\times (1-0.91^{t-2})\times \left(0.6v_{0}+{\frac {J}{0.91}}-{\frac {0.02M}{0.6\times 0.91\times 0.09}}\right)}$

## 进阶公式

${\textstyle {\textrm {V}}_{H}^{\,n}(v_{0},T,n)=\left(0.6\times 0.91^{T}\right)^{n}v_{0}+\left(0.6\times 0.91^{T-1}J+0.02M{\frac {1-0.91^{T-1}}{0.09}}\right){\frac {1-(0.6\times 0.91^{T})^{n}}{1-0.6\times 0.91^{T}}}}$